Proximal Point Nonlinear Rescaling Method for Convex Optimization

نویسندگان

  • Igor Griva
  • Roman A. Polyak
  • Song Wang
  • IGOR GRIVA
  • ROMAN A. POLYAK
چکیده

Nonlinear rescaling (NR) methods alternate finding an unconstrained minimizer of the Lagrangian for the equivalent problem in the primal space (which is an infinite procedure) with Lagrange multipliers update. We introduce and study a proximal point nonlinear rescaling (PPNR) method that preserves convergence and retains a linear convergence rate of the original NR method and at the same time does not require an infinite procedure at each step. The critical component of our analysis is the equivalence of the NR method with dynamic scaling parameter update to the interior quadratic proximal point method for the dual problem in the rescaled from step to step dual space. By adding the classical quadratic proximal term to the primal objective function the PPNR step can be viewed as a primal-dual proximal point mapping. This allows analyzing a wide variety of non-quadratic augmented Lagrangian methods from unique and general point of view using tools typical for the classical quadratic proximal-point technique. We proved convergence of the primal-dual PPNR sequence under minimum assumptions on the input data and established a q-linear rate of convergence under the standard second-order optimality conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual exterior point method for convex optimization

We introduce and study the primal-dual exterior point (PDEP) method for convex optimization problems. The PDEP is based on the Nonlinear Rescaling (NR) multipliers method with dynamic scaling parameters update. The NR method at each step alternates finding the unconstrained minimizer of the Lagrangian for the equivalent problem with both Lagrange multipliers and scaling parameters vectors updat...

متن کامل

Primal-dual nonlinear rescaling method with dynamic scaling parameter update

In this paper we developed a general primal-dual nonlinear rescaling method with dynamic scaling parameter update (PDNRD) for convex optimization. We proved the global convergence, established 1.5Q-superlinear rate of convergence under the standard second order optimality conditions. The PDNRD was numerically implemented and tested on a number of nonlinear problems from COPS and CUTE sets. We p...

متن کامل

A generalized proximal point algorithm for the nonlinear complementarity problem

We consider a generalized proximal point method (GPPA) for solving the nonlinear complementarity problem with monotone operators in R ' \ lt differs from the classical proximal point method discussed by Rockafellar for the problem offinding zeroes of monotone operators in the use of generalized distances, called (p-divergences, instead of the Euclidean one. These distances play not only a regul...

متن کامل

Primal-Dual Nonlinear Rescaling Method for Convex Optimization

In this paper we consider a general primal-dual nonlinear rescaling (PDNR) method for convex optimization with inequality constraints. We prove the global convergence of the PDNR method and estimate error bounds for the primal and dual sequences. In particular, we prove that, under the standard second-order optimality conditions the error bounds for the primal and dual sequences converge to zer...

متن کامل

Primal-Dual Nonlinear Rescaling Method for Convex Optimization

In this paper, we consider a general primal-dual nonlinear rescaling (PDNR) method for convex optimization with inequality constraints. We prove the global convergence of the PDNR method and estimate the error bounds for the primal and dual sequences. In particular, we prove that, under the standard second-order optimality conditions, the error bounds for the primal and dual sequences converge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011